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An O(3, l )  nonlinear a-model and the AblowibLadik 
hierarchy 

V E Vekslerchik 
Institute for Radiophysics and Eleebunics. Ukrainian Academy of Sciences. Proscura 
Streef 12. Kharkov 310085. Ukraine 

Received 21 December 1993. in final form 6 May 1994 

Abstract A solvable nonlinear 2D field model is pmposed which is shown to be closely 
connected with the nonlinear ScMMinger chain. The conservation laws and soliton solutions 
for the corresponding field equaions are obtained. 

1. Introduction 

The distinguishing feature of nonlinear r-models is the fact that the nonlinearity in these 
models is geometric in character: it is caused not by unhamonic potentials or interactions 
but by constraints imposed on the system. Formally, the constraints manifest themselves in 
the fact that the fields are taken to satisfy some additional conditions and, hence, become 
valued in some nonlinear manifold. 

A good example of a situation in which the restrictions imposed on a linear system lead 
to a non-trivial highly nonlinear distribution of the field is the model proposed by Pohlmeyer 
[I], who considered the wave equation restricted to the O(N)-invariant manifold. Later, 
the O(4) model was studied by Lund 12.1, who developed the corresponding variant of the 
inverse-scattering method (ISM) (see also the work by Getmanov [3]). An example of the 
appearance of such a model in physics was demonstrated by Lund and Regge [4]. 

The present work is devoted to the case somewhat opposite to the one studied in [I]. 
While Pohlmeyer deals with the Lorentz-invariant differential operator and the Dalambertian 
and 'Euclidean' restrictions, we will consider the Euclidean analogue of the wave operator, 
the Laplacian and the Lorentz-invariant restrictions. Thus, the model presented below can 
be termed an O(3, I)-invariant nonlinear u-model. 

So, consider the problem 

A(IF + A(Iw = 0 

under the restriction 

r$&J = - 1  

a2  Here A = -$ + w and r$w is a space-like vector from the Minkowski space 

2 3  (I'=((1°,9'.6 99) 
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(1.3) 
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with the scalar product 

$”@P = &O - $ ‘ @ I  - @$2 - $+3*3. (1.4) 

To satisfy condition (12), the Lagrange multiplier h is set to 

h = -(v4p. vp) .  (1.3 

Hereafter, the scale invariance will be broken by normalizing coordinates in such a way 
that 

a,$, a,v - ay& ay#” = m2 ax+p ay#’ = o (1.6) 

where m is a constant playing the role of the spatial scale (a, stands for ala,, etc). 

the surface q V ( x ,  y )  
The vectors $6”. a#, ay@‘ together with the time-like vector x p  which is normal to 

(1.7) 

To demonstrate the relationship between the model considered and the O(4) a-model, 

m2cos2a = ( ~ 8 ” .  ~ 4 ” ) .  (1.8) 

After some straightforward calculations which we have omitted here, one can obtain 

X,,@P = x,, a,4@ = xP a,@p = o X ~ X ’  = 1 

form a local basis in Minkowski space. 

as well as with the sine-Gordon equation, consider the quantity a, defined by 

the Gauss-Weingarten system 

where the 4 x 4 matrices U and V are given by 

0 1 0 

0 -ff, tancu axcota  mu 
0 -u/(m cos's) v / ( m  sinz@) o 
0 0 1 

-Uy tan a 

(1.10) 

(1.11) ayco ta  -mu 
aYx cot a 

v = (  -m2 O sin2 ci ff,tana 
0 -v/(mcosZa) -u / (m sin2 a) 0 

with U and U being some functions of x and y. 

can be written in terms of a, U and U (see 1.2) as follows 
The integrability conditions for the system (1.9), the so-called Gauss-Codazzi equations, 

U 2  + U2 
Aff-m2sincicosa+ . = O  sin a cos a 

(U cot + (U cot = 0 

(1.12) 

(1.13) 

(U tancu), - (utancu), = 0. (1.14) 



An O ( 3 .  I )  nonlinear a-model and the Ablowitz-Ladik hierarchy 

After integrating equation (1.14) 

U = pxcot(Y U = &COtff 

the remaining two equations, (1.12) and (1.13), become 

and 

div(cot‘ aVg) = 0. 
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(1.15) 

(1.16) 

(1.17) 

Note that the particular case (B = 0) of the above equations is the elliptic sine-Gordon 
equation which was studied by Leibbrandt [5 ]  and which naturally appears when the problem 
of surface embedding in the Minkowski space is considered [61. 

These equations are the Euler-Lagrange equations for the action 

S = / /dxdyL (1.18) 

with the Lagrangian 

L = (VU, VCU) + cot’ a(~ j3 ,  VP) - m2 cosz a (1.19) 

which can be rewritten in terms of the function 

q = cos (Y exp(iB) ( 1.20) 

as follows 

(1.21) 

or, after rescaling x + i x ,  y + i y ,  as 

(1.22) 

Here, I want to note that the Lagrangian of the problem (1.1). (1.2), L = (V&, V@‘), 
which consists of the ‘kinetic energy’ only, is transformed in the framework of Pohlmeyer’s 
method to one with a ‘mass’ term (the last t e n  in (1.19) or (1.21)). Such an effect has 
been known since the studies of the O(3) a-model L = (V4, Vqb), 161 = I) ,  which can 
be reduced (see, e.g., [l]) to the sineGordon system with the Lagrangian possessing the 
‘potential-energy’ term (it is similar to (1.19) with the ,%term omitted). An interesting 
problem arises from the fact that the traditional way of taking into account the constraint 
141 = 1, using the stereographic projection, leads again to the pure ‘kinetic’ Lagrangian 
L = (Vq,  VG)/(l+ 1q1*)’. The problem is to describe the O(3.1) model in an analogous 
way using the group parameters, but this question will not be discussed in the present paper. 

The field model described by the Lagrangian (1.22) can also be obtained as the reduction 
of the Euclidean version of the principal chiral-field model, as outlined in the appendix. 
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The field equations corresponding to the Lagrangian (1.22) are the main subject of the 
present work. It is possible to develop the inverse-scattering scheme applicable to this 
equation (as achieved for the O(4) model by Lund [Z]). However, in the present work, use 
will be made of another approach which is based on the remarkable fact that the model 
considered, as will be shown below, is closely related to the hierarchy of integrable equations 
proposed by Ablowitz and Ladik [7] (some features of this hierarchy are discussed briefly in 
section 3). It turns out that this relationship provides almost all the results that are usually 
obtained in the framework of the ISM. It can be used to demonstrate that the O(3 , l )  u-model 
possesses an infinite number of symmetries and conserved quantities (see section 4) and 
to obtain soliton and some other solutions for the field equation (see section 5). Although 
not all problems arising in connection with the O(3,  1) u-model can be solved using this 
approach, it seems to be rather interesting and may be useful in some situations (some 
remarks and examples on this question can be found in section 6). As to the ISM, the 
elaboration of the corresponding inversescattering scheme is surely a problem of primary 
importance, but this question, which is worth special consideration, will not be featured 
here but will be discussed by the author in a future paper. 

2. Field equation 

The field equation corresponding to the Lagrangian (1.22) can be written as 

F Aq + - W q ,  0 4 )  + 4pq = 0 
P 

where 

2 P = 1 - 141 
or, by introducing the complex variables 

z = x + i y  i = x - i y  

as follows 

(2.4) 
4 

qzi + -4zqi + Pq = 0. 
P 

Some simple transformations lead to the following representation of equation (2.4): 

* -  * A  

D+D-q = D-D+q = q  (2.5) 

where the nonlinear operators b* are defined by 

(the commutator [b+, 6-1, which is, in general, non-zero, vanishes when applied to a 
solution of (2.4)). 
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Noting that if q is a solution of (2.4) then h+q and h-q are also solutions, one can 
construct, starting from q.  a double-infinite (in a general case) sequence [q,,) by means of 
the recurrence 

* 
qx t~  = D*qn (2.7) 

and deal with, instead of (2.4). the two infinite systems 

ia,q. = p.qn+] (2.8) 

iaiq, = P.q.-I. (2.9) 

Since systems (2.8) and (2.9) can be treated separately, one can say that such an approach 
reduces a partial differential equation (2.4) to the two systems of ordinal differential 
equations, which in the next section will be shown to belong to the Ablowitz-Ladik 
hierarchy. 

3. The Ablowitz-Ladik hierarchy 

The Ablowitz-Ladik hierarchy-the discrete version of the AKNS hierarchy-is the infinite 
set of ordinal differential equations, the most well known of these being the discrete 
nonlinear Schrodinger equation (DNLSE) 

(3.1) 2 i t  = qn-1 - 2qn + qn+l + ~14.1 + 4 4  

with the dot standing for the derivative with respect to time and K = f l ,  which, after the 
substitution q. + q. exp(2it), takes the form 

i4. = ( 1  + KIqn1* ) (qa - l  +q,+l). (3.2) 

The inverse scattering method for the infinite chain (-CO < n < CO) was developed 
in [8] for K = 1 and in [9] for K = -1. The problem (3.1) under quasipenodic 
conditions was solved in [ 10,111 (this case will not be discussed in what follows). Recently, 
the author investigated the corresponding finite system (3.2) (K = - 1 ;  n = 1 , .  . . , N; 
1401 = 1qN+ll = 1) [12]. In all the above-mentioned versions of the problem related to 
(3,1), the DNLSE chain turns out to be integrable: it possesses a sufficient number (infinite 
in the infinite case and N in the case of an N-node chain) of first integrals of motion I,,, 
(i,,, = 0; see, e.g., 171) in involution. 

The system (3.2) (hereafter, only the case of K = -1  will be considered) is Hamiltonian 
and can be rewritten as 

4" = (H, q n l  (3.3) 

(3.4) 

(3.5) 
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Here 

and the Hamiltonian 

H =2ReI l  (3.7) 

where I t  is the first integral given by 

(the summation is performed over all n's in the infinite case and from 0 to N in the finite 
case). 

The geometrical interpretation of the evolution equation (3.3) is that it describes the 
flow over the manifold determined by the set of integrals I,. Each of the constants of 
motion can play the part of the Hamiltonian, giving rise to different flows over the same 
manifold 

(3.9) 

where HX = &(It, I,, . . .). The Ablowitz-Lad& hierarchy is the set of equations (3.9) 
which may be termed 'higher DNLSE'S'. 

The flows (3.9) commute since the corresponding integrals are in involution: ( I t ,  I,,,) = 
0. So we can treat them simultaneously, regarding (3.9) as a system of equations. 

Let us consider two of the above flows: one determined by H and one with the 
Hamiltonian G given by 

G = -2111111 (3.10) 

which leads to the system 

-= IH, qnl = -ipn(qn+l + qn-d (3.11) 
ax 

(3.12) 

Since {H, G] = 0, this system is compatible and can be solved using a standard 
technique (some of its solutions will be written below). Differentiating (3.11) with respect 
to x and (3.12) with respect to y, one can obtain the identity 

I 
div -Vqn + ~ ( P . - I  + p.+I)q. = 0 

P" 

from which, again using (3.11) and (3.12). one can derive the following identity: 

(3.13) 

(3.14) 

which is nothing more than equation (2.1). 
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In this way, we obtained the following result: each solution of system (3.11) and 
(3.22), closely related to the DNLSE (3.2). is a sohtion to the Euler-hgrange equation for 
the O(3, I )  o-model(l.18). (1.22). Also, it is not surprising, since the system (3.11). (3.12), 
when rewritten in terms of z = x + iy and i, is exactly the same as system (2.8). (2.9). 

In the following, use will be made of some of the higher DNLSE 

and 

for m = 2,3  with the integds 12.3 being given by 

1-2 2 
12 = -j&-1Pn.l.+1 - yqn-14. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 13 = ~ S n - 2 P * - I P n q n + l  -S"-linP"%+] 2 -i,LP.4.4.+1 + ? % % + I .  1-3 3 

4. Symmetries and conserved currents 

Presenting the Euler-Lagrange equations (2.4) in the form 

where 

and A2[q, r] = A l [ r ,  q ] ,  one can write the equation determining symmetries as 

where k is the Frechet derivative of the Euler-Lagrange operator: 

It i s  obvious that the derivatives 

(4.3) 

(4.4) 

with respect to any parameter A solve equation (4.3). The Ablovitz-Ladik hierarchy provides 
an infinite set of differentiations (see (3.15) and (3.16)) which can be used to obtain an 
infinite number of symmemes: 
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where z - j  = 2,. 
The simplest of these 

eo = ($) (4.7) 

corresponds to the invariance of the problem under the transformations q -+ qei6, 
(I + @e-'€. The next symmetries, 

correspond to a shift of  coordinates and stem from the autonomity of our system. The 
above symmetries Qo,,, are 'usual' and inherent to a wide range of models of physical 
interest, while existence of the 'higher' symmetries Q*j, j > 2, is a remarkable feature of 
the model considered and indicates its integrability. The first few of these can be written as 

P2 
- 4 m  --(44u& +4:G) ---4 4zQr 

- 4 m  - -(-4z(Irz(I + 424:) ---4 4r4 
P P Z  

3 2- -I -2 

3 
Q 3 = (  P 3 (4.10) 

(the expressions for their counterparts - &-2.-3 - can be obtained from (4.9) and (4.10) by 
complex conjugation: Q-j = R,, R- j  = Q,). 

Each of the symmetries (4.6) gives rise to the conservation law QjAz + RjAl = 
a, .rj' + 8: J,!' (see [ 131). The first few that correspond to the symmetries Qo, . . . , can be 
wntten as 

(4.1 1) 

Returning from z and Z coordinates to x and y coordinates, they can be rewritten in the 

div J") = 0. (4.15) 

divergent form 

So, the current corresponding to the phase invariance, J", is given by 

(4.16) 
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The currents corresponding to &I 

constitute an Euclidean version of the energy-momentum tensor 

(here x1 = x, x2 = y ) .  
It is tempting to present the conservation laws (4.15) in the 'curl' form 

J ( j )  = cu) 

where 

curl2 c = ( ayc ) . - a x  

6307 

(4.17) 

(4.1 8) 

(4.19) 

(4.20) 

The 'potentials' Cu), which are non-local in the general case, can be constructed in 
the framework of the DNLSE chain (2.Q (2.9). This means that, instead of a current 
J(j)  = JG) [q ] ,  one should consider, for a given j ,  the infinite set of currents 

Jy  = J q q " ]  (4.21 j 

where (4.) is the sequence of the solutions of the field equation (2.4) defined by (2.7), i.e. 
the solution of system (2.Q (2.9). In terms of this sequence, J@) can be rewritten as 

One can obtain from (2.8) and (2.9) the following expression for the potential C,$"': 

" r  
c;') = Inp,-lp,,,. 

m=-m 
(4.23) 

Analogously, for the currents J'*", which are given, in 'node' representation, by 

the potentials can be written as 

Ct) = Re e>m-lqm ( 4 . W  
,=-ea m=-m 

The primes in (4.23) and (4.25) denote that the corresponding sums should be prdperly 
regularized if necessary. 
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5. Solutions for the field equation 

The relation between the O(3, 1) u-model and the Ablowitz-Ladik hierarchy provides us 
with a wide range of solutions for the field equation (2.4). which can be obtained by 
modification of the already known solutions of the DNLSE chain (3.2). In the present paper, 
I will not discuss stationary and quasiperiodic solutions and confine myself to solutions 
corresponding to the dark solitons [9] and to the 'finite nodes' [12] of the DNLSE. 

The dark solitons of the D m E  can be presented in the following form (derivation of 
the corresponding formulae can be found in [9]): 

where ha@), (hn(n) = hk(O)l{jxl-") depend on x ( x  in (5.1) stands for f in (3.2)), 

Djk = (1 - {jfk)- '  (5.2) 

and  CY^ = (a/2) + arg(r - {;I). The parameters (x, which are the eigenvalues of the 
corresponding scattering problem (see [9]), are located on the arc Ir( - 11 = p. The 
constants p. which characterize q at infinity, and r are related by p2  + rz  = 1. 

Although the expression (5.1) was obtained for equation (3.2). it can be shown that the 
corresponding solution for the system (2.8), (2.9) has the same smcture with the elements 
hk depending on z, Z as follows 

hk exp(2 r ( l~d -~  - 1 ) h ~ k z l  (5.3) 

which leads to the following expression for the N-soliton solution for the O(3,  1) o-model: 

where 

with 

Here h! and &, which are related to <k through rC& = 1 + pexp(i@k), are arbitrary 

The expression for the modulus of q$) can be written as 
constants. 

where 
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and A; are given by an expression similar to (5.8) with ht replaced by hk1ck1*2. It can be 
seen that the solutions obtained satisfy the so-called 'finite-density' boundary conditions 

Is$? + P as IXI, I Y I  + 63 (5.9) 

and may be termed the dark-soliton solution for the O(3, 1) u-model. 
The one-soliton solution can be written as 

where 

The modulus of qf' is given by 

(5.10) 

(5.11) 

(5.12) 

It is clearly seen that this soliton can be viewed as a hole against a p-valued background 
(this is why such solitons have been termed 'dark'). The limiting values of the phase of 
qf'(x, y) exp(2ir'x) are 0 and 219, depending on the direction in which we tend to infinity. 

From (4.19) and (4.23). (4.25). one can obtain the following curl representation of the 
conserved cuments in the dark soliton case: 

(5.13) 

(5.14) 

The N-soliton solution (5.4) depends, when p is fixed, on N real parameters @k. The 
solutions presented below are in some sense 'richer': they are defined up to an arbitrary 
function. They correspond to the finite nonlinear Schrijdinger chains that were discussed 
in [IZ], where it is shown that the bounded (n 0) system (3.2) for K = -1 possesses 
solutions of the form 

where the Toeplitz determinants B., B," are given by 

(5.15) 

(5.16) 

(5.17) 

and u*j are related by 

0-j = Gj. 
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One can straightforwardly check that (5.15) is a solution to (2.8) and (2.8) and, hence, to 
the field equation (2.4), if the wj satisfy the linear system 

(5.18) 

(5.19) 

Note that the wj are solutions to the Helmholtz equation 

A@ - 4~ = 0. (5.20) 

The solution of the system (5.19) satisfying conditions (5.17) can be written as 
- 

wj = s2j + a-j (5.21) 

where 

aj = l d <  fi(OFjexpIi(t-i - O x  + ( < - I  + 5)yt  (5.22) 

and the function h is arbitrary, as well as the contour r. 
In this way, the functions 

(5.23) 

where the determinants BN, B: are given by (5.16) and (S.21), (5.22), for any N ,  solve the 
field equation (2.4). 

The simplest of these can be written as 

(5.24) 

As an example, consider the 'cyl in~cal '  solutions with separable variables. Choosing 

a 
az 

qif' = i- Inw(x,y). 

h(<) = constant, one can write them in the cylindrical coordinates 

x = r c o s v  y = rs inq (5.25) 

(5.26) 

(5.27) 

where Z, are the modified Bessel functions. 

fN(r) = 1 - 0cr-I)  for large r .  

(5.23) can be written as 

A simple analysis of expression (5.27) yields that f ~ ( r )  c( r N  for small r and that 

The curl representation of the conserved currents in the case of 'Toeplitz' solutions 

BN+I J(O) = curl2 In - 
BN-I 

(5.28) 

(5.29) 

(compare with (5.13), (5.14)). 
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6. Conclusion 

In the present work, we have studied the O(3, 1) o-model using the relation of this model 
with the well known Ablowitz-Ladik hierarchy. This approach enables us to obtain a set 
of symmehies and conservation laws, as well as solitons and some other solutions for the 
field equation. However, the investigation reported above is far from exhaustive. There are 
a number of questions that have not been answered in the paper. 

The existence of an infinite set of the conserved currents (formally, their independence 
has yet to be proved) and of soliton solutions, as well as the results of the corresponding 
studies of the O(4) model, clearly indicate that the O(3, 1) o-model is really an integrable 
model. However, strictly speaking, this conclusion has not been proved in the present paper 
and, hence, this is still to be achieved. 

To confirm the integrability of the model considered it is desirable to develop the 
corresponding inverse-scattering scheme. This will also provide answers to some problems 
that are difficult to solve in the framework of the approach used above. So, for example, 
in section 4, only a few of the conserved currents were presented, which were derived by 
‘converting’ from the symmetries. In principle, we can obtain all of these (since we know 
an infinite set of the integrals of the Ablowitz-Ladik model, we know an infinite set of 
the differentiations and, hence, an infinite number of the symmetries, which provides, in 
principle, an infinite set of the conservation laws) but this procedure is rather cumbersome 
and provides a closed expression for the generating function, which can be obtained in the 
framework of the ISM. One other problem that may be solved using the inverse-scattering 
technique is to obtain the general solution of the field equation (2.4) (see the work by 
Krichever [ 141). 

So, the question of developing the inversescattering scheme is of primary importance. 
This problem is rather non-trivial and especially worth investigating. All the more since the 
established relation between the O(3, 1) a-model and the Ablowitz-Ladik hierarchy ceases 
to be apparent in the framework of the ISM, since the ISM for the model considered, which 
is a field model, differs drastically from the ISM for the Ablowitz-Ladik model, which is 
a discrete model (one can get an insight into the inverse-scattering scheme for the O(3 , l )  
a-model from the work by Lund [2] devoted to the O(4) case). 

Another range of questions that has not been mentioned here is related to the topological 
aspects of the proposed o-model: the homotopical classification of solutions, existence of 
the solutions with finite action, etc. 

I now want to mention some models closely related to the one considered. Using the 
procedure outlined in section 3 and starting from the DNLSE (3.2) with K = + I ,  one can 
derive the field model described by the Lagrangian 

Another remarkable, and rather surprising, feature of the Ablovitz-Ladik hierarchy is 
its connection with the famous U) Toda chain. One can straightforwardly check that the 
quantities pn defined by pn 1 - 1q.l2 (see (3.6)) solve the equation 

$A1npn = PA - 2p. + pntl (6.2) 

which can be rewritten in terms of the functions U,, defined by U. - U”-, = In pn, as 

(6.3) 1 = eUa+l-Un - e U a - 4 - l  
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To conclude, I want to note the following. The approach used in this paper is, in some 
Sense, an alternative to the traditional ISM and can be useful in some situations. So, for 
example, the solutions given by (5.23) can hardly be obtained in the framework of the 
standard version of the ISM for, say, the O(3, 1) model: a model similar to the scheme by 
Lund [2]  (the crucial moment here is the boundary conditions). At the same time, they 
naturally appear in the framework of the Ablowitz-Ladik hierarchy. As another example, 
I will mention the ZD Toda chain (6.3). The corresponding inverse-scattering scheme is 
based on the multidimensional ISM, which is technically rather difficult. So, possessing an 
alternative to the ISM can be useful when, for example, physical applications of the ZDTL 
are considered. 

Appendix. Principal chiral fields 

Consider the Lagrangian of the Euclidean version of the principal chiral-field model 

c. = trg,(g-l)i  = -trgzg-'gig-' (A.1) 

where g is a 2 x 2 matrix. The Corresponding Euler-Lagrange equations 

2gz.i = gzg-lgi  + gig-lgz  

can be rewritten in terms of the matrices 

(A.2) 

A E g,g-' B ~ g .  zg 64.3) 

as 

Ai  = -;[A, B ]  

It follows from (A.4) that 

Bz = + [ A ,  B ] .  

(note that t r A  = tr B = 0 if det g = constant). 
Hereafter, it will be assumed that 

detA =det B = 1. (A.6) 

The case det A = a*(z),  det B = b Z ( i )  can be reduced to (A.6) by means of the substitution 

A k , ? )  = a ( z ) A i ( z i , i i )  B ( z , i )  = b ( i ) B i ( z i , Z i )  

z1 = / dz a(z )  21 = / d i  b(i) .  

The derivatives A,, Bi can be presented as 

A, = aiC + aa[A, C] 

B i = b i C t b z [ B , C ]  
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where 
C = [A, Bl (A.lO) 

and the functions al.’, b1.2 will be defined below. Multiplying equations (A.8) and (A.9) 
by C and taking the trace, one can get 

(A.l l )  Ti 4bz = -- 72 4a2 = - 
1 - 5’ 1 -r2 

with 
T = ;@AB. (A.12) 

Differentiating (A.8) with respect to Z and (A.9) with respect to z. and expressing A,f 
and BZi using (A.4), one can obtain the following equations: 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

These equations, which are the compatibility conditions for equations (A.4) and (A.8), 

r = C O S ~ C Y  (A.17) 

aal 

ai 

az 

- + 4rbzal - 4azbl = 0 

4razb1 + 4b2al = 0. abi -- 

(A.9), can be rewritten in terms of CY defined by 

as 
~ ~ ~ , i - ~ i n o r c o s a r ( 1 + 4 a l b l ) = O  (A.18) 

(a1 sin201)i + (b, = 0 (A.19) 

(a1  COS'^^)^ - (bl C O S ~ C Y ) ~  = 0. 
After expressing a1 and bl using equation (A.19) as 

Bi b, =-- 
2 sin’ CY 2sin’a 

B z  al = - 
the remaining two functions become (1.16) and (1.17). 
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